

Fraunhofer-lines and corresponding absorbing substance						
ULTR. VIOLE X-RAY GAMM RAYS		4	F E E			HEFA RADIO 7000 7500 MW
Liı	ies	Due To	Wavelengths (Å)	Lines	Due To	Wavelengths (Å)
	A - (band)	0.	7594 - 7621	F	Н	4861
sity	B - (band)	0	6867 - 6884	d	Fe	4668
< e L			6562	е	Fe	4384
			6000	f	Н	4340
nuq	a - (band)	02	6276 - 6287	G	Fe & Ca	4308
с 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	D - 1, 2	Na	5896 & 5890	g	Са	4227
nic	E	Fe	5270	h	Н	4102
oto	b - 1, 2	Mg	5184 & 5173	н	Са	3968 JUNE * SIG
Віорһ	С	Fe	4958	К	Са	3934

Infrared array detectors

InGaAs arrays are required for spectral analysis in the near to middle infrared $(0.9 - 2.6 \ \mu \ m)$. High performance multichannel detectors for this spectral region are a **recent development**. The vast majority of detectors sold today are based on silicon technology which only operates on the shorter wavelength side of the NIR region (< 1.1 μ m).

otonics @ Lund Univ

